[Google_Bootcamp_Day16]
Updated:
Convolutional Neural Network
Computer Vision problems
- Image classification
- Object Detection
- Neural Style Transfer
- etc…
Deep Learning on large images
- Assume image size is 1000 * 1000 * 3, # 1st hidden layer node = 1000
- Then W[1] = (1000, 3M)
Problem : too many parameters
Solution : Use Convolutional Neural Network instead of standard Neural Network
Edge Detection (basic of cnn)
Vertical Edge Detection
Horizontal Edge Detection
key point of cnn : learn “filter matrix” itself
Why padding is necessary
- Image shrink problem
- Edge pixels are used much less
“Valid” and “Same” convoliton
- “Valid” (no padding) : (n * n) * (f * f) -> (n-f+1) * (n-f+1)
- “Same” (pad so that output size = input size) :
(n * n) * (f * f) -> (n+2p-f+1) * (n+2p-f+1), p = (f-1)/2 (f : usually odd)
Stride
[source] https://www.coursera.org/learn/convolutional-neural-networks
Leave a comment